AD

Awarq Number: W81 XWH-05-1-0041

TITLE: Prostate Dose Escalation by Innovative Inverse Planning-Driven IMRT

PRINCIPAL INVESTIGATOR: Lei Xing, Ph.D.

CONTRACTING ORGANIZATION: Stanford University
Stanford, CA 94305-5401

REPORT DATE: November 2006

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy or decision unless so designated by other documentation.



REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-

4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to com
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

ply with a collection of information if it does not display a currently

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
01/11/06 Annual 1 Nov 2005 — 31 Oct 2006
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Prostate Dose Escalation by Innovative Inverse Planning-Driven IMRT

5b. GRANT NUMBER
W81 XWH-05-1-0041

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Lei Xing, Ph.D.

5d. PROJECT NUMBER

Se. TASK NUMBER

E-Mail: lei@reyes.stanford.edu

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Stanford University
Stanford, CA 94305-5401

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT: The goal of this project is to develop innovative inverse treatment planning techniques for
period significant progress has been made toward the goal of the project. We have established the voxel-ba
treatment planning. Realizing that current radiation therapy does not adapt to inter-fraction organ movement
patient setup or organ deformation during a course of treatment, we have devised a dynamic closed-loop co

prostate radiation therapy. In the last funding

sed dose optimization framework for IMRT

and dosimetric errors caused by inaccurate

ntrol algorithms for adaptive therapy (ART) inverse

planning and demonstrate their utility with data from phantom and clinical prostate cases. The inverse planning for ART is particularly relevant considering

that the emergence of on-board cone beam CT in the clinics, which affords an effective means to obtain the
and recompute on a routine basis the dose to be delivered (or actually delivered) to the patient. Our work m

patient’'s geometric model just before treatment
akes it possible to adaptively taking the organ

deformations and dose delivery history into account. We anticipate that these tools will greatly facilitate the imaging, planning, delivery, and quality assurance

of prostate IMRT.

15. SUBJECT TERMS
Prostate Cancer

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
OF ABSTRACT OF PAGES USAMRMC
a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (include area

U u u uu 209

code)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18




DOD Prostate Cancer Research Program Principal Investigator.___Lei Xing, Ph.D.

Table of Contents
HIOAUEEION oo s i mun b o aaa e 4
R O wisrs e e e e B e s e +
Key Research AccompliShments .........cc.cocevvevereeceennenennenenseennennenne 7
Repietable DMCDINOE. ooussmumimmnmmmmssm i os 7
B T m— 9
Referonins . o mnmmmsonnsomsm s s m i i oa g s RS s 9

APPERAICEE . o visisinoassmnuasmsamms sy SR sSas AREAS RAS A 11



DOD Prostate Cancer Research Program Principal Investigator:___Lei Xing, Ph.D.

I. INRTODCUCTION
This Idea Award (PC040282, entitled “Prostate Dose Escalation by Innovative Inverse Planning-Driven
IMRT”) was awarded to the principal investigator (PI) for the period of Nov 1, 2004—Oct. 31, 2007. This
is the annual report for the second funding period (Nov. 1, 2005 — Oct. 31, 2006). The goal of this project
is to improve current prostate IMRT by establishing a novel inverse planning framework. Under the
generous support from the U.S. Army Medical Research and Materiel Command (AMRMC), the PI's
research team has made significant progress toward the general goal of the project and contributed greatly
to prostate cancer research. A number of significant conference abstracts and refereed papers have been
resulted from the support. The preliminary data obtained under the support of the grant has also enabled the
PI to start new research initiatives. In this report, the past year’s research activities of the PI are

highlighted.

ILRESEARCH AND ACCOMPLISHMENTS
Inverse treatment planning is at the foundation of modern radiation therapy. We have worked in the past
year to improve the existing inverse planning framework. Our work has been focused on four related areas
in inverse planning, which are: (1) inverse planning strategies for adaptive prostate radiation therapy; (2)
relationship between voxel-based penalty scheme and EUD framework; (3) enabling techniques for clinical
implementation of adaptive prostate radiation therapy; and (4) evaluation of adaptive inverse planning for
prostate IMRT. By using the new inverse planning techniques, we can now significantly improve the
radiation dose distributions as compared with the current practice. The study should have widespread impact

on clinical prostate IMRT in the future.

Inverse planning for adaptive prostate radiation therapy: Current IMRT treatment plan optimization
and dose delivery are two decoupled steps. In each fraction, the patient geometry is hardly the same as in
the pre-treatment CT simulation. A commonly used method to take the uncertainty into account is to add a
safety margin, whose size is based on population statistics, to the target and sensitive structures. This
significantly compromises the success of radiation therapy. Recently, on-board cone-beam computed
tomography (CBCT) integrated with a medical linear accelerator has become available and promises to
improve the situation. CBCT provides a valuable 3D (or even possibly 4D'?) geometric model of the
patient in the treatment position. This not only affords an opportunity for on-line correction of patient
setup error” °, but also makes adaptive radiation therapy (ART)G'8 possible, which uses the volumetric

information to adjust the treatment plan each fraction according to the updated patient anatomy and
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positioning. ART can optimally compensate various uncertainties, including organ deformation and inter-
fraction organ motion as well as dosimetric errors incurred in previous fractions’'®. To realize ART
clinically and maximally exploit the potential of this new form of image guided radiation therapy (IGRT), a
robust inverse planning strategy for ART must be in place.

We have recently developed dynamic closed-loop control strategies for ART inverse planning and
demonstrate their utility with data from phantom and clinical cases ', Closed-loop control algorithms are
a general tool for dealing with time-dependent systems '> '°. The algorithms in all these applications share
the same basic closed-loop control framework of repeated re-evaluation and re-planning. ART is a natural
application for closed-loop control because CBCT provides frequently updated system information. To
meet different clinical requirements, we investigated two types of closed-loop control algorithms (4dapting
to Changing Geometry (ACG) and Adapting to Geometry and Delivered Dose(AGDD)). ACG is useful
when the accumulated dose is not known accurately. At this point, the deformable registration, which is
essential for the calculation of accumulative dose, is still not robust enough for clinical use. ACG is
particularly helpful in this situation as it affords a currently implementable technique to cope with the
nuisance caused by organ deformation. The AGDD algorithm is designed to optimize the radiation
treatment when both geometric and dosimetric updates are available from time to time.

We emphasize that the proposed ART inverse planning is purely dose based and doesn't consider
any radiobiological effects. In principle treatment plan optimization should be based on biological models
as they are clinically the most relevant. We have recently proposed a general time-dose-fractionation
optimization strategy'’. This idea combined with our ART framework could potentially handle

biologically adaptive radiation therapy. This research is currently in progress.

Relationship of EDU-based and dose-based plan optimization: The essence of inverse planning is how
to rank objectively the competitive treatment plans. We have established a unified inverse planning
framework and shown the equivalence of EUD-based and the conventional dose-based objective

8 In the existing approaches, the dose-based function (e.g., the quadratic function) treats each

function'
voxel within a structure equally, whereas the EUD-based function aims to take into account of dose-
volume effect when ranking the candidate plans. For a conventional approach to accomplish what an EUD
method does, we partially “break” the implicit constraint that a structure is a uniform entity. The
determination of the voxel-specific importance is dealt by heuristically relating them to the local doses. We
have shown that voxel-based strategy is a most general ranking scheme, which can model both volumetric

behavior and higher order factors. EUD and other dose-volume formalisms represent special cases of the
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general framework. This work permits us to reformulate the EUD-based approach into the realm of
conventional dose-based formalism without using biological parameters. With the new formalism, we can

now design IMRT plans that would otherwise be unattainable.

Developments of other enabling technologies for the implementation of the novel adaptive prostate
radiation therapy: To clinically implement ART, a number of “enabling” tools, such as deformable image
registration, automated contour mapping from planning CT to the CBCT, and effective CBCT-based dose
calculation algorithm, must be developed. In addition to tackle the dose optimization problem in ART by
developing suitable dynamic control algorithms, we have also worked on establishing these enabling tools.

CBCT affords an effective means for us to examine the actual dose distribution to be delivered or
already delivered to the patient on a routine basis. We have evaluated the accuracy of kV CBCT-based
dose calculation and addressed some logistic issues related to its application for prostate IMRT. This work
was presented in 2006 AAPM annual meeting in Orlando, FL, and a manuscript has been submitted to
Physics in Medicine and Biology for publication.

Conventional deformable registration treats all image volume equally. Realized that some regions
can be mapped between the moving and fixed images with higher confidence than others, we investigated a
strategy of using a priori knowledge of the system to reduce the dimensionality of the deformable image
registration problem and to speed up the registration calculation. Our approach consisted of two natural
steps. First, a number of small cubic (0.5~1cm in size) control volumes are placed'®, on the locally rigid
regions of the moving image. Each control volume is mapped onto the moving image using a rigid
transformation. In the second stage, the pre-determined correspondence serves as a priori information for
the BSpline deformable registration calculation. This technique significantly reduces the search space and
improves the convergence behavior of the gradient-based iterative optimization calculation. Along the
same line, a contour mapping technique has been developed to map contours from simulation CT to daily

CBCT images for adaptive therapy'® .

Evaluation of potential impact of adaptive prostate radiation therapy: We have also investigated the
potential impact of an integrated procedure for CBCT-based adaptive prostate IMRT treatment {Xing,
2006 #13}. Five prostate cases were selected for this study. For each patient, 3 gold markers were
implanted into the prostate for target localization. A regular simulation CT was performed using a GE
Discovery-ST scanner, and the prostate and seminal vesicle (SV) targets and the involved sensitive

structures were outlined. 5-field IMRT plan was used for the actual patient treatment. Over the treatment
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course, 3~5 CBCTs were acquired using Varian Trilogy after the patient was setup under the guidance of
kV planar imaging (routine procedure). The CBCTs were registered to the sim-CT using a deformable
model and the organ contours outlined on the sim-CT were auto-mapped to the CBCTs with tissue
deformation taken into account. In addition to the actual plan for treatment, two plans were generated each
time after a CBCT was acquired for off-line evaluation. These are: (i) the reconstructed delivered dose
obtained using the beam parameters (fluence maps, beam configuration, and MUs) of the patient’s
treatment plan'; and (ii) the adaptive therapy plan with the fluence maps re-optimized to conform to the
CBCT-derived, on-treatment patient anatomy and the dose delivery history reconstructed after each CBCT.
In generating the 2" plan, a gradient-search based dynamic algorithm was used to deal with the frequently
updated inverse planning goals and patient geometric data. Comparison of the three types of plans was
carried out to assess the improvement resulting from the adaptive approach. With the margins used in
current prostate IMRT, we found that SV, bladder and rectum doses benefited most from the adaptive
therapy. In addition, our study suggested that correcting the patient’s daily setup just through the
translation and rotation is often not enough and accounting for the organ deformation is important,
especially if the target margin is to be reduced for dose escalation or for hypofractionated treatment.
Adaptive therapy based on the volumetric on-board CT imaging and patient treatment history is an

effective way to deliver highly conformal IMRT dose to prostate patients on a routine basis.

III. KEY RESEARCH ACCOMPLISHMENTS

. Established a theoretical relationship between spatially non-uniform penalty scheme and EUD

formalism in inverse treatment planning.

. Developed method for incorporating a priori knowledge into deformable image registration.
. Evaluated the feasibility of using on-board cone-beam CT for on-treatment dose calculation.
. Developed novel closed-loop inverse planning strategies for adaptive prostate IMRT.

. Assessed the potential impact of adaptive radiation therapy for prostate cancer management.

IV. REPORTABLE OUTCOMES
The following is a list of publications resulted from the grant support in the last funding period.

Refereed publications:
1. delaZerda A, Armbruster B, Xing L, Closed-Loop Control Algorithms for Planning Adaptive Radiation
Therapy, Physics in Medicine and Biology, submitted, 2006.
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2

3.

Paquin D, Levy D, Schreibmann E., Xing L, Multistage image registration, Mathematical Biosciences and
Engineering 3, 389-418, 2006. — figures featured in the cover of the issue of the journal.

Xing, L, Thorndyke B, Schreibmann E, Li T, Yang Y, Kim G., Luxton G, Koong, A, Overview of image guided
radiation therapy (IGRT), Medical Dosimetry 31, 91-122, 2006.

Yang Y, Schreibmann E., Li T, Xing L, Evaluation of dosimetric accuracy of kV cone beam CT-based dose
calculation, Physics in Medicine and Biology, submitted, 2006.

Chao M, Schreibamnn E, Li T, Wink N, Xing L, Automated contour mapping for 4D radiation therapy, Medical
Physics, submitted, 2006.

Paquin D, Levy D, Xing L, Multistage deformable image registration, IEEE Transactions on Medical Imaging,
submitted, 2006.

Paquin D, Levy D, Xing L, Hybrid of multistage and BSpline deformable image registration, /[EEE
Transactions Image Processing, submitted, 2006.

Conference abstract:

1:

2

3

10.

11.

12,

M Chao*, E Schreibmann, T. Li, L. Xing, Knowledge-Based Auto-Contouring in 4D Radiation Therapy, 2006
AAPM Annual Meeting, Orlando, FL.

Xing, L. and Spielman D, Functional and Molecular Imaging for Radiotherapy Guidance, 2006 AAPM Annual
Meeting, Orlando, FL (invited talk).

B Armbruster, A de la Zerda, L Xing, A New 4D IMRT Algorithm and Its Performance Analysis, 2006 AAPM
Annual Meeting, Orlando, FL.

B Armbruster, A de la Zerda, L Xing, A New Dose Optimization Algorithm for Adaptive Radiation Therapy,
2006 AAPM Annual Meeting, Orlando, FL.

M Chao,T Li, L Xing, Enhanced 4D CBCT Imaging for Slow-Rotating On-Board Imager, 2006 AAPM Annual
Meeting, Orlando, FL.

Wang C., Yang Y, Schreibmann E., Li T., and Xing L: Evaluation of Kv CBCT-Based Dose Verification. 2006
AAPM Annual Meeting, Orlando, FL.

Yang Y., Levy D. and Xing L, Relationship of EDU-Based and Dose-Based Plan Optimization, 2006 AAPM
Annual Meeting, Orlando, FL.

E Schreibmann*, B Thorndyke, L Xing, Intra- and Inter-Modality Registration of Four-Dimensional (4D)
Images, 2006 AAPM Annual Meeting, Orlando, FL.

T Li, L Xing, P Munro, Y Yang, B Loo, A Koong, 4D Cone-Beam CT (CBCT) Using An On-Board Imager,
2006 AAPM Annual Meeting, Orlando, FL.

S Kamath, E Schreibmann, L Xing, Deformable Image Registration with Auto-Mapped Control Volumes, 2006
AAPM Annual Meeting, Orlando, FL.

A. de la Zerda, B. Armbruster and L. Xing, Inverse Planning for Adaptive Radiation Therapy Using Dynamic
Algorithm, International Journal of Radiation Oncology*Biology*Physics, Volume 66, Issue 3, Supplement 1, 1
November 2006, Pages S123-S124.

W. Mao, T. Li, P. Munro, M. Chao and L. Xing, Individualizing 4D Cone-Beam CT (CBCT) Acquisition
Protocol for External Beam Radiotherapy, International Journal of Radiation Oncology*Biology*Physics,
Volume 66, Issue 3, Supplement 1, 1 November 2006, Pages S146-S147.

B. Cox, T. Ho, B. Thorndyke, T. Pawlicki, B. Loo, L. Xing, K. Goodman and A. Koong, Integrated Analysis of
Pancreatic Tumor Motion Using Multiple Image-guided Modalities, International Journal of Radiation
Oncology*Biology*Physics, Volume 66, Issue 3, Supplement 1, 1 November 2006, Pages S53-S54.

P. Lee, L. Xing, T. Pawlicki, P.T. Tran, A. Koong and K. Goodman, Image-Guided Radiation Therapy (RT) for
Rectal Cancer Using Cone Beam CT (CBCT), International Journal of Radiation Oncology*Biology*Physics,
Volume 66, Issue 3, Supplement 1, 1 November 2006, Page S276.

T. Li, E. Schreibmann, A. Koong, Q. Xu, R. Hamilton and L. Xing, Verification of Gated Radiation Therapy
Using Pre-Treatment Four-Dimensional Cone-Beam CT, International Journal of Radiation
Oncology*Biology*Physics, Volume 66, Issue 3, Supplement 1, 1 November 2006, Page S604.

L. Xing, A. de la Zerd, M. Cao, T. Li, B. Armbrush, Y. Yang, P. Lee, T. Pawlicki, S. Hancock and C. King, On-
Board Volumetric CT-based Adaptive IMRT For Improved Prostate Cancer Treatment , International Journal
of Radiation Oncology Biology Physics 66, 2006, S624-S625,
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13. S. Kamath, E. Schreibmann, D. Levy, D. Paquin and L. Xing, Improving the Convergence and Computational
Efficiency of Deformable Image Registration Calculation by Incorporating Prior Knowledge , Int International
Journal of Radiation Oncology Biology Physics 66, 2006, S646-S647

14. D.C. Paquin, D. Levy and L. Xing, Multiscale Image Registration, International Journal of Radiation
Oncology Biology Physics 66, 2006, S647

15. E. Schreibmann and L. Xing, Intra- And Inter-Modality Registration of Four-Dimensional (4D) Images
International Journal of Radiation Oncology Biology Physics 66, 2006, , S648

16. M. Chao, E. Schreibmann, T. Li, A. Koong, K.A. Goodman and L. Xing, Automatic Contouring in 4D
Radiation Therapy, International Journal of Radiation Oncology Biology Physics 66, 2006, S649.

17. M. Ding, L. Xing, W. Xiong, K. Stuhr and F. Newman, Validation of a 4D Monte Carlo Treatment Planning
Tool Using an Image Interpolation Model ¢ International Journal of Radiation Oncology Biology Physics 66,
2006, S655-S65.

18. E. Elder, E. Schreibmann, T. Li, T. Fox, L. Xing, J. Crocker and J. Landry, Registration of 4D CBCT and 4D
CT for Extracranial Stereotactic Treatments e International Journal of Radiation Oncology Biology Physics 66,
2006, S651.

19. P. Peng, M. Chao, Q. Le, T. Li, A. Hsu, T.A. Pawlicki and L. Xing, Auto Contour Mapping in CBCT for ART
Treatment Planning ¢ International Journal of Radiation Oncology Biology Physics 66, 2006, S651-S652

20. L.R. Crocker, F. Tim, E. Elder, H. Shu, J. Landry, E. Schreibmann and L. Xing, Automated Segmentation of
Cone Beam CT (CBCT) Datasets Using the Planning CT (PCT) as A-Priori Knowledge ¢ International Journal
of Radiation Oncology Biology Physics 66, 2006, S654.

21. B. Thorndyke, E. Schreibmann, A. Hsu, T. Fox and L. Xing, Four-Dimensional Registration of Respiratory
Gated PET e International Journal of Radiation Oncology Biology Physics 66, 2006, S656-S657 .

22. C. Wang, Y. Yang and L. Xing, Evaluation of Cone Beam CT (CBCT)-Based Dose Calculation * International
Journal of Radiation Oncology Biology Physics 66, 2006, S658-S659.

23. B. Armbruster, A. de la Zerda and L. Xing, Inverse Planning for 4D Intensity Modulated Radiation Therapy ¢
International Journal of Radiation Oncology Biology Physics 66, 2006, S690-S691.

24. Yang Y, Levy D., Xing L, Voxel-based penalty scheme for inverse planning, invited talk in 2006 World
Congress on Medical Physics and Bioenegineering, Seoul, 2006.

V. CONCLUSIONS
Novel adaptive IMRT inverse planning formalism has been developed for the treatment of prostate cancer.
A few important milestones have been achieved toward the general goal of the project. These include (i)
Established a theoretical relationship between spatially non-uniform penalty scheme and EUD formalism
in inverse treatment planning; (ii) Developed method for incorporating a priori knowledge into deformable
image registration; (iii) Evaluated the feasibility of using on-board cone-beam CT for on-treatment dose
calculation; (iv) Developed novel closed-loop inverse planning strategies for adaptive prostate IMRT; and
(v) Assessed the potential impact of adaptive radiation therapy for prostate cancer management. Integration

and further refinement of the above tools are in progress.
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Abstract

Current radiation therapy (RT) does not adapt to inter-fraction organ movement and
dosimetric errors caused by inaccurate setup or organ deformation during a course of
treatment. The emergence of on-board cone beam CT (CBCT) affords an effective
means to obtain the patient's geometric model just before treatment and recompute on a
routine basis the dose to be delivered or actually delivered to the patient. This makes it
possible to adaptively correct for dosimetric errors in the previous fractions by modifying
the treatment plan. However, before this new scheme of RT can happen clinically, an
inverse planning algorithm capable of taking into account the dose delivery history and
the patient's geometric model must be in place. In this paper we devise dynamic closed-
loop control algorithms for adaptive therapy (ART) and demonstrate their utility with data
from phantom and clinical cases. To meet the needs of different clinical applications, we
study two classes of algorithms: those Adapting to Changing Geometry and those
Adapting to Geometry and Delivered Dose. The former class takes into account organ
deformations found just before treatment. The latter class optimizes the dose
distribution accumulated over the entire course of treatment by adapting at each fraction
not only to the information just before treatment about organ deformations but also to the
dose delivery history. We showcase two algorithms in the class of those Adapting to
Geometry and Delivered Dose. We study the feasibility and utility of the algorithms
using phantom and clinical cases. A comparison with conventional approaches

indicates that ART optimization may significantly improve the current practice.

Keywords: adaptive therapy, IGRT, closed-loop control, inverse planning, organ motion,

IMRT



1. Introduction

Current IMRT treatment plan optimization and dose delivery are two decoupled steps. In
each fraction, the patient geometry is hardly the same as in the pre-treatment CT
simulation. A commonly used method to take the uncertainty into account is to add a
safety margin, whose size is based on population statistics, to the target and sensitive

structures. This significantly compromises the success of radiation therapy.

Recently, cone-beam computed tomography (CBCT) integrated with a medical linear
accelerator has become available and promises to improve the situation. CBCT
provides a valuable 3D (or even possibly 4D(Dietrich et al., 2006; Li et al., 2006; Sonke
et al., 2005)) geometric model of the patient in the treatment position and allows for
verification of the delivered dose distribution. This not only affords an opportunity for on-
line correction of patient setup error and inter-fraction rigid motion(Oldham et al., 2005;
Pouliot et al., 2005), but also allows dose recalculation (Langen et al., 2005; Yan et al.,
1997; Yang et al., 2006), and adaptive radiation therapy (ART)(Langen et al., 2005; Yan
et al.,, 1997; Yang et al., 2006), which uses the volumetric information to adjust the
treatment plan each fraction to the updated patient anatomy and positioning. A
significant promise of ART is the optimal compensation of uncertainties including organ
deformation and inter-fraction organ motion as well as dosimetric errors incurred in
previous fractions(de la Zerda et al., 2006; Mohan et al., 2005; Olivera et al., 2006;
Trofimov et al., 2005; Wu et al., 2006). To realize ART clinically and maximally exploit
the potential of this new form of image guided radiation therapy (IGRT), a robust inverse

planning strategy for ART must be in place.

The purpose of this work is to develop dynamic closed-loop control strategies for ART

inverse planning and demonstrate their utility with data from phantom and clinical cases.



Closed-loop control algorithms are a general tool for dealing with time-dependent
systems (Widrow and Stearns, 1985; Widrow and Walach, 1995) and are used to solve
a variety of problems including automobile cruise control, supply chain optimization,
computer chip design, and spaceship navigation. The algorithms in all these
applications share the same basic closed-loop control framework of repeated re-
evaluation and re-planning. ART is a natural application for closed-loop control because
CBCT provides frequently updated system information. To meet different clinical

requirements, we investigate a few variants of these algorithms.

The next section starts with a brief review of the foundations of closed-loop control.
Section B continues by presenting a formalism for ART planning, the intensity-modulated
radiation therapy (IMRT) approach, and our new ART algorithms. In section C, we
demonstrate the significance of our new approach with phantom and patient case
studies. Section D takes a broader perspective to discuss this work and directions for

future research. We conclude in section E.

2. Methods and Materials
This section starts with an overview of closed-loop control and then later describes
various closed-loop control algorithms for ART before summarizing these algorithms in

Table 2.

2.1 Foundations of Closed-Loop Control

The use of feedback makes closed-loop control unique(Widrow and Stearns, 1985;
Widrow and Walach, 1995). In open-loop control, Fig. 1a, some input is fed to the
controller which then decides on an action. The controller then performs that action on

the system (the system being the physical or biological system we want to control)



effectively putting the system into a new state (which hopefully is “better” in some
sense). We could simulate an open-loop control context by connecting the output of the
algorithm implemented by the controller to a simulation of the system: the input is fed to
the algorithm which feeds an action to the system simulator which outputs the new state

of the system.

random
lfactors
ntroller resulting
input SAnNe action system system state
——l) ; 3 —
(contoured CT) | ~ (inverse planning (choice of | (patient and dose delivery)
software) treatment plan)

Figure 1a: open-loop control (conventional treatment planning)

Conventional inverse planning is a form of open-loop control. The input is a set of
contoured CT images or the geometric model of the patient. The controller is the inverse
planning software, and it outputs a treatment plan (the action). Finally, a simulator of the
system (modeling the execution of the plan) uses the treatment plan and some random

factors to output the resulting system state.

In closed-loop control, the controller is not run just once but repeatedly, each time
receiving the current state of the system as its input (Widrow and Stearns, 1985; Widrow
and Walach, 1995). The term feedback is used because the effect of the current action

(the new state of the system) is used by the controller to plan the next action. Suppose

we have N time periods (treatment fractions), and we let S be the action in period i

(treatment plan for fraction i) and y, the resulting system state at the end of period i .

Then a closed-loop controller is a function producing an action for the current period



from the state at the end of the last period 3 =& (v, ) .

random
lfactors &
system state v, | controller action g, | system W
(contoured CT) (planning)  |(choice of treatment (patient and dose delivery) -
plan for fraction i)

3

system state i,

(the dose actually delivered in fraction i and new CBCT)

Figure 1b: the closed-loop control framework

We propose to plan ART using closed-loop control, Fig. 1b, where the controller is the
inverse planning software and the state of the system after fraction 7,
W, = (W™ ™) | has two parts: the patient's geometric model derived from

cumdose
i

contoured CBCT images, w ™, and the cumulative dose, , delivered in

cumdose

fractions 1 through i. (Clearly, vy, =0.) Unlike the open-loop control in

conventional RT, in ART the controller outputs a plan (the action) for only the current
treatment fraction. Table 1 summarizes the relationship between control theory and

treatment planning.

Closed-loop control algorithms (which we propose for ART) are richer than static open-

loop control algorithms (found for example in conventional RT). A static open-loop

controller determines a treatment plan, (4,....,3y), and therefore the final state of the

system y/, based only on the initial state of the system v/, whereas dynamic closed-

loop algorithms reevaluate the state each time step and based on that, decide their



current decision. Because of that, the treatment plan, (4,,..., 3,), depends not only on

the initial state y,, but also on the progress made during treatment, (y,....y,_,).

Hence closed-loop control algorithms are more likely to produce better results than static

open-loop control algorithms for time-dependent systems.

Treatment planning is a critical step to realizing the potential of ART in clinical practice.
Current IMRT inverse planning is designed for a conventional fractionated treatment
scheme (Alber and Nusslin, 1999; Bedford and Webb, 2003; Bortfeld, 1999; Censor,
2003; Hristov and Fallone, 1997; Oelfke and Bortfeld, 1999; Rowbottom et al., 2001;
Shepard et al., 2002; Soderstrom et al., 1993; Thieke et al., 2003; Webb et al., 1998;
Xiao et al., 2000; Xing et al., 2005; Yang and Xing, 2004b) and is incapable of planning
an adaptive treatment with consideration of the dose delivery history. The purpose of
this work is to establish a dynamic control framework for adaptive radiation therapy.
This planning framework allows us to individualize radiation therapy for each patient by

taking advantage of newly available volumetric imaging information.

Closed-Loop Control Radiation Therapy

time period (i) fraction

input (/) contoured CT images, (&™)
action in period 7, () treatment plan for fraction i

contoured CBCT images, (™), and
system state after period 7, (y,)

cumdose )
i

cumulative delivered dose, (@

controller RT inverse planning software

system patient geometry and treatment delivery




setup errors, delivery errors, and organ
random factors/noise in period i, (&)
deformations in fraction i

Table 1: Relationship between control theory and treatment planning

2.2 Formalization of ART plan optimization

Consider plans, (4,,...,5y), for N fractions. Suppose at voxel v, the importance
factor is a(v) (Alber and Nusslin, 1999; Corletto et al., 2003; Li and Yin, 2000; Xing et

al., 1999) and the prescribed dose is DP*™™!(v). We define a dose delivery function

D("), such that under plan S and delivery error £ the cumulative dose after fraction i
is e (v) = MO (v) + D(v; By &, wET™™) at voxel v. Without delivery errors (i.e.,

without any setup errors or deformations of organs), ¢=0. Let B be the set of

deliverable (feasible) plans. Our ultimate goal is then to find the feasible plan

(Bs-.-, By) optimizing

. rescribed umdos: 2
ming_, 5 2. @)D W) -y (v)

=ming 5 5 s Za(v)(D"'“‘“"“’(v) ->.D(, ﬁ,,a,.,wff;""m)j : (1)
= i=1

The objective function is the weighted quadratic deviation of the cumulative delivered

dose from the prescribed dose. There is no way to find in advance the optimal solution

to this problem because the actual delivery error in fraction i, ¢,, is unknown when we

must decide on the plan £ . While the simplest idea is to optimize

_ N 2
minﬂ. eB...fyeB Z a(v)(DPfescnbed i z D(v, 3,0, U/geommy)j ,
¥ i=1

we suggest in the following sections some more sophisticated approximations to



problem (1).

2.3 Baseline Algorithm 1: Planning with Population-Based Margins
A common approach adds large margins to structures to compensate for delivery errors
and uses the same plan every fraction, S, =---= 3, (i.e., a static plan). These margins

Dreei®d () “and importance factors, @(-). This

lead to modified dose prescriptions,
yields the new optimization problem:

ryprescribed ( V)

B ==p, =arg minﬂeB Zd(v)(—

2
N _D(v’ﬂ507(//(§eomeuy)] 8

While this approximation is simple, it exposes much healthy tissue to high dose.

2.4 Baseline Algorithm 2: Adapting to Changing Geometry
Assume that a CBCT imaging is taken prior to every treatment fraction. Based on the

current anatomy information, a new plan for the current fraction is formed. This means
that we consider 5™ when determining S. In particular we choose for fraction i

the feasible plan that minimizes the weighted quadratic deviation from the initial

prescribed dose: for all fractions i,

Dprescn'bed ( V)
N

2
ﬂ’ = arg minﬂGB Za(v) _D(v9 ﬁs O,W,_g_elometry J .

In other words, the algorithm tries to deliver the same daily prescribed dose,

D /N in each fraction.

2.5 Adapting to Geometry and Delivered Dose

We can do better than in the previous section, B.4, by taking into account not only the



geometry

up-to-date CBCT imaging information /7 , but also other factors such as the

cumulative delivered dose /™ . In this work we present two algorithms that take into

i=1

geometry cumdose

account both /7 and 7 when choosing a feasible plan for fraction i. In

cumdose

general this adaptive dose goal may depend on the dose delivery history, /" , and

predictions of future geometry. The two algorithms we investigate differ in how they
choose this adaptive dose goal. The first compensates every fraction for delivery errors
in previous fractions, and the second incorporates predictions of the future patient

geometry.

2.5.1 Immediately Correcting Algorithm (ICA)

This algorithm, Fig. 2, takes into account the dose delivery history as well as the
anatomy model derived from daily CBCT images. No prediction is attempted about the
patient model in the subsequent fractions. This algorithm adjusts the originally
prescribed dose to completely compensate voxels which were overdosed (or
underdosed) in previous fractions by decreasing (or increasing) the dose goal at those

voxels. Specifically, it adds in fraction i the accumulated error from the previous
i-1

Sl ; - _ - .
fractions, ’TD"“"“""“’—WW"“"’“, to the original daily prescription dose, D"*™/N

resulting in an adaptive dose goal of

Dprescribed = 1 ' i )
Dgoal - 4+ Dprescnbed =l W?mdose sy Dprescnbed g W?mdose .
i N i-1 i1

Note that the adaptive dose goal can be accurately calculated as long as the previous
cumdose

delivered doses, ™", are known. While this is currently not the case, the

information is becoming increasingly available. This algorithm chooses the feasible plan

B € B for fraction i that minimizes the weighted quadratic deviation of the planned

10



dose, D(., 3,,0,&™™) from the adaptive dose goal, D"

i-1

ﬂi =arg min feB Za(v)(D,goal - D(v, ,B,O, (//l.g_elommy))z (2)

7 2
=arg minﬂeB z a(v)(‘]lv_ Dprescribed(v) ! l//iz:_lxlmdose (V) - D(V, ﬁ,O, ng_elomelry ) .

cumdose cumdose
i i-1

actual delivered|dose
D(" /Bi ) £'.’ Wgeomcuy

i-1

for fraction i cumulative dose | |, cumdose
for fractions 1,....i-1 | ~ '

ICA controller

contoured CBCT‘

P i ;
eometry goal prescribed cumdose
l//,.g_l Di =—D =W plan ﬂ,

CBCT

» delivery

Figure 2: Block Diagram for ICA

2.5.2 Prudent Correcting Algorithm (PCA)

Consider a treatment course of N fractions. Let i be the current fraction index and d
be the number of fractions for which we forecast the patient's anatomy and position
(e.g., d =2 means predicting two days ahead of the current fraction). So to deliver the
current fraction we find the optimal plan not only for this fraction but also for the
subsequent d fractions. Note, that d may be a function of the current fraction i. For
instance, taking d(i) = N —i means that we predict the anatomy and organ locations for
the rest of the treatment course. Optimizing only for the current fraction ignores our
(albeit imperfect) knowledge of the future and therefore misses the opportunity to
compensate the dose in future fractions. Note that this does not prevent one from
updating the system when the next set of information becomes available at a certain

future fraction. To determine the plan chosen for fraction i we optimize

11



2
d resCribes cum Ose —’+d redicte: comet
Minges o s Za(v)( N Dol (y) — g ZD(V B;:0,y7 e W)J (3)

J=t

where Predcedaeomery L predicedeconeny gre the predicted anatomy locations for fractions

i through i+d. The optimizers of problem (3) are a sequence of plans, £,...,3,,, the

first of which is the plan, 3, that we will implement in fraction /. Clinically, this scheme

is useful when dealing with situations of tumor shrinkage after a replanning CT/CBCT is

done (see the discussion section for more details).

We consider a simple prediction model in which the anatomy remains unchanged for the

next d fractions to illustrate the approach (in practice one may use more sophisticated

predicted-geometry __ geometry

=W for fractions i through

prediction models). That is, we assume y/;

i+d . For this prediction model, it can be shown that (3) reduces to

2
= afgmmﬂeaZa(v)( D= (v)~ l//f_".md"“(V)—(l+d)D(v,,3,0,t//F_°,°'“°"y)).

We can also give this model the form of problem (2) by defining

Dprescn'bed 1

] '
Dgoal = + ! Dprescnbed - .cumdose ] 4
i N d +1 ( N l//l—l ( )

If d=0, then this algorithm coincides with the previous ICA algorithm. In equation (4)

we see that this algorithm differs from the ICA algorithm because the correction to the
the accumulated error is divided among the subsequent d +1 fractions of therapy to
achieve better uniformity and robustness of therapy. Alternative schedules for
compensating the accumulated error that accommodate specific clinical considerations

should be easily implementable.

12



Objective functions

Algorithm for different schemes of dose optimization
ming s g8 D& (")(Dpresmbed(v) =Y. D, B, 5, W& mm))
Perfect Foresight : s
minimize the difference between the prescription and the delivered
dose accumulated over all treatment fractions
) . Dprescribed (V) - 2
Baseline 1: B == Py =argming, Za(v)(T— D(v, 3,0,y &™)

Population-Based

Margins

Add margins to the prescription and then minimize the difference

between the prescription and the daily planned dose.

2
= D(V, /Bs 0’ W?jommy)j

~

(v)=(1+d)D(v, ﬁ,O,W,“.‘}"'"“"y)J

prescribed
B =argmin ,;_, Za(v) (D—(v)
Baseline 2: Adapting : N
to Changing
Geometry Update the patient's geometric model every fraction using CBCT and
plan a dose for that geometry that minimizes the difference to the
daily prescription.
-g lmmedlate|y )B: =arg minﬂe,, Za(v)(.]:/_ DPTCSCﬂbed(v) _ l'U,‘t:_ulrndose(v) - D(V, ﬂ,O, W}g_elomeu}’ )
© Correcting ¥
2 o  Algorithm Update the patient’'s geometric model every fraction using CBCT and
"E’ é (ICA) plan a dose for that geometry that minimizes the difference to the
b= prescribed dose plus the accumulated error.
oo '
[} j ;
‘g,% Prudent f, =argmin ZG(V)(%/E DIl (v) =y 2=
§ = 2;’2‘;?;';9 Update the patient's geometric model every fraction using CBCT and
2 (P% A) using that geometry plan a dose for remaining (d+1) fractions that

minimizes the difference to the prescribed dose plus the accumulated
error.

Table 2: Summary of various radiation therapy algorithms

2.6 Evaluation and Case Study

We developed an in-house inverse planning platform to evaluate this closed-loop control

framework and the novel Adapting to Geometry and Delivered Dose algorithms. This

platform implements various RT planning strategies by optimizing fluence maps using a

commercial nonlinear optimization code SNOPT (Gill et al., 2005). The platform also

13




simulates the effectiveness of these plans by implementing the dose delivery function

D().

Using this platform we compare the following algorithms: Adapting to Changing
Geometry (our baseline), Immediately Correcting Algorithm (ICA), Prudent Correcting
Algorithm (PCA), and Perfect Foresight. Results of the Population-Based Margins
Planning Algorithm are not shown since the selection of margin size varies with
institution and, in general, it performs much worse than our baseline. Perfect Foresight
is an algorithm that accurately predicts future errors and motions (see Table 2). The
performance of this algorithm may not actually be attainable, but it sets a theoretical

upper bound on the performance of any RT planning algorithm.

We compared the algorithms on a cubic phantom case and a prostate patient case. The
phantom, Fig. 3, is 20cm in size and at its center has a C-shaped target enclosing a
round sensitive structure. In both cases, we asked the algorithms to generate a plan

with 15 fractions and using 5 equally spaced beam directions. The tumor, sensitive
structures, and normal tissue were assigned importance factors of @ =10 a = 3 and

a=0.7 respectively. We simulated setup errors by introducing independently for every
fraction a random translation chosen uniformly at random from [-1, 1Jcm and a random
rotation chosen uniformly at random from [-29, 20]. In section C we compare the results
visually in terms of the cumulative DVH and numerically for each organ in terms of the

average dose and standard deviation of the dose.
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3. Results

3.1 Phantom study
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Figure 3: Phantom Anatomy

The results are shown graphically in Fig. 4 and statistically in Table 3. Each row of table

3 compares an algorithm to our baseline, Adapting to Changing Geometry.
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Adapting to Changing Geometry (Baseline 2) Immediately Correcting Algorithm (ICA)
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Figure 4a: Cumulative dose delivered to phantom as percent of prescription
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Figure 4b: DVHs of cumulative dose delivered to phantom as percent of perscription.

Tumor Sensitive Structure Normal Tissue
Algorithm Avg.Dose 10 Avg.Dose =10 Avg.Dose = 10
ICA +9% +48% -48% -12% +18%  +47%
PCA +8% -13% -18% 9% 7% +14%
Perfect Foresight +9% -30% -89% -65% -8% +13%

Table 3: Cumulative dose delivered to phantom for various algorithms relative to the

baseline algorithm, Adapting to Changing Geometry.

Fig. 4a shows three benefits the Adapting to Geometry and Delivered Dose algorithms
(and of course the Perfect Foresight algorithm) have over the baseline Adapting to
Changing Geometry. For the first benefit, notice how the 25% contour in our baseline is
shifted slightly down from the sensitive structure. All the other algorithms do not show
this shift. This shift is most likely due to some setup error (that isn't corrected for in our

baseline). The second benefit (also seen in the DVHs and Table 3) is dose escalation to

17



the tumor while keeping the sensitive structure close to 25% (unlike the baseline, these
algorithms achieve tumor doses close to 100%). The third benefit is steeper gradients

around the tumor (because dose correcting algorithms won't let errors accumulate).

Aside from these benefits, the dose distributions in Fig. 4a also show how much worse
ICA is than PCA. As discussed above, ICA is able to escalate dose to the tumor while
keeping the dose to the sensitive structure low, but along the way it overdoses normal
tissue and decreases dose uniformity (see Table 3). ICA may have fractions with higher
doses than PCA since it tries to completely correct for dose delivery errors in the next
fraction. We believe this makes ICA less robust than PCA because when combined with
organ deformation or setup error these higher doses lead to bigger errors. The differing
performance of the two Adapting to Geometry and Delivered Dose algorithms show that

the algorithmic details matter.

Looking at the DVH in Fig. 4b, we see that the Perfect Foresight algorithm achieves
significantly better results than the adaptive algorithms (e.g., PCA). This is explained by
the obvious fact that the Perfect Foresight algorithm has the fundamental advantage of
accurately predicting the future. This gap between the adaptive algorithms and the
Perfect Foresight algorithm represents the potential of closed-loop control algorithms as
they become more sophisticated in terms of future predictions and therefore become
closer and closer to the Perfect Foresight algorithm. Especially the dose to the sensitive
structure and to the normal tissue is not as low as in the Perfect Foresight result. In

addition, the tumor dose uniformity could improve a bit.

3.2 Prostate Study

The resulting dose distributions and their DVHs are in figures 5a and 5b. Each row of

18



table 4 compares an algorithm to our baseline, Adapting to Changing Geometry.

Adapting to Changing Geometry (Baseline 2) Immediately Correcting Algorithm (ICA)

y [cm]

—Body
Right Femur
e | eft Femur

e R CtUM Perfect Foresight

15 10 -5 0 5 10 15

x [cm] x [cm]

Prudent Correcting Algorithm (PCA)

x [em] x[cm]

Figure 5a: Cumulative dose delivered in prostate study as percent of prescription
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Figure 5b: DVHs of cumulative dose delivered in prostate study as percent of
prescription
Tumor Femurs Rectum Normal Tissue
Algorithm Avg. Dose 10 Avg.Dose 10 Avg.Dose 10 Avg.Dose 1o
ICA +6% +14% +196%  +165%+21%  +73% +24%  +28%
PCA +5% = -44% +40% +45% -5% +18% +13% +11%
Perfect Foresight +5% -49% -8% +12% -54% -40% -7% +2%

Table 4: Cumulative dose delivered in prostate study for various algorithms relative to

the baseline algorithm, Adapting to Changing Geometry.

As in the phantom case, the dose distributions (80% and 95% contour lines of Fig. 5a)

show that PCA improves upon the baseline by being able to achieve dose escalation

and increased uniformity to the tumor while keeping the dose to the rectum (the sensitive

structure) low.

In contrast, ICA performs even worse than in the phantom case (it

delivers more dose to the femurs and normal tissue). Even more than in the phantom

20




case, the Perfect Foresight DVH shows how much the Adapting to Geometry and
Delivered Dose algorithms can still improve. In particular, the dose could be lower to the

femurs and to a lesser extent to normal tissue and the rectum.

4. Discussion

In current clinical practice, patient setup relies primarily on information from simulation
and treatment planning(Balter, 2003). During the whole course of treatment, usually the
same treatment plan and setup DRRs (digitally reconstructed radiographs) are
employed. Clinically, effort is focused on reproducing, with the aid of orthogonal planar
images, the patient's geometry at the simulation stage using translations (and
occasionally rotations). While this approach is justifiable for treatment of certain types of
diseases such as brain tumors, it generally compromises the treatment because inter-
fraction variations in volumes and shapes of the target and sensitive structures are not
taken into account. Generally, these inter-fraction changes are multi-dimensional
because organs can move relative to each other, and in an extreme situation, each voxel
within a soft organ can move relative to other voxels in a complicated manner.
Deformable image registration (Court and Dong, 2003; Court et al., 2005; Schreibmann
et al., 2005) helps by making these inter-fraction changes visible. But even then,
compromised treatment is inevitable because the few degrees of freedom in patient
setup (translation and rotation) cannot completely correct for the multi-dimensional
changes in the patient geometry: patient setup cannot simultaneously align all the

involved structures.

ART solves the problems described in the previous paragraph by adjusting every
fraction not only the setup but also the treatment plan. We treat ART as a closed-loop

control system where every fraction we re-optimize the radiation beams based on the
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latest information (e.g., coming from CBCT). The hope is that the many degrees of
freedom available in selecting a plan allow us to compensate for the multi-dimensional
changes in the patient geometry. In ART the plan is updated routinely, and the fraction-
to-fraction variations of anatomy/physiology and dose delivery lead to modifications of

the voxel-specific dose prescription.

ART can be implemented at different levels where the beams can be made to
accommodate (i) the new patient setup and the deformed target shape; or (ii)
positional/anatomic/physiological changes of all involved organs; or (iii) deformable
changes of organs and accumulated dose delivery errors. In conventional 3D conformal
radiation therapy, it is not uncommon for a physician to modify a beam portal under the
guidance of portal films while the patient is on the treatment coach. In a sense, this is an
example of the first kind of ART listed above. However to adapt well to multi-
dimensional organ deformations, the number of variables in the beam should be large.
Thus the modality of choice for the treatments of type (ii) or (iii) is IMRT or alike. The
information available in a particular treatment setup (e.g., whether information is
captured about the delivered dose) restricts the types of ART possible in that setup. Our
results show that correcting for dose delivery errors (i.e., type iii ART) incurred in
previous treatment fractions is important. In conventional radiation therapy (and type i
and ii ART) dose errors accumulate because they lack such a compensating

mechanism.

ART is a new strategy and its implementation entails the development of a number of
“enabling” tools, such as deformable image registration, automated contour mapping
from planning CT to the CBCT just before treatment, and effective dose optimization

algorithms. This paper tackles the dose optimization problem in ART by developing
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suitable dynamic control algorithms. These algorithms try to rapidly optimize the
treatment plan each time a new set of input data is available. We propose two types of
closed-loop control algorithms (Adapting to Changing Geometry and Adapting to
Geometry and Delivered Dose, see Table 2 for details) for different clinical applications.
Adapting to Changing Geometry is useful when the accumulated dose is not known
accurately. At this point, the deformable registration, which is essential for the
calculation of accumulative dose, is still not robust enough for clinical use. Adapting to
Changing Geometry is particularly helpful in this situation as it affords a currently
implementable technique to cope with the nuisance caused by organ deformation. The
“manual”’ approach described by Mohan et al (Mohan et al., 2005) represents a special
example of geometric adaptation. The algorithms Adapting to Geometry and Delivered
Dose are designed to optimize the radiation treatment when both geometric and
dosimetric updates are available from time to time. The two algorithms Adapting to
Geometry and Delivered Dose (ICA and PCA) differ in how they use the update data to
direct the treatment. First, ICA is proposed for the situation where the dose
compensation needs to be performed right after each system parameters update.
Clinically, ICA is valuable in eliminating the unpredictable daily changes resulting from
random and fraction specific organ deformation, rectum or bladder filling. Disease sites
that are likely to benefit from the treatment include, but are not limited to, prostate,
rectum, and cervical cancers. In PCA the task of dose compensation is accomplished
by spreading the previous dosimetric errors over a number of subsequent fractions. For
practical or clinical reason, the volumetric images just before treatment may not be
available on daily basis. In this case, PCA becomes a viable option for certain types of
diseases since it distributes the task of compensating a dosimetric error among a
number of fractions instead of all-in-one. Indeed, there are clinical situations where the

variation of the anatomy may not be notable from day to day but over a larger time span.
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Tumor shrinkage and weight loss in some head and neck cases represents a model
example, where the CBCT and re-planning do not need to be performed on daily basis.
Re-planning using PCA would allow us in this case to maximally benefit from state-of-
the-art imaging information. In a way, PCA is similar to the off-line “dumped” correction
scheme proposed by Mackie et al (Keller et al., 2003; Mackie et al., 2003), in which the
correction is done at a certain point(s) of the treatment course and then applied to

several subsequent fractions.

Although showing significant improvement, we note that the algorithms described in this
paper are still far from the maximum theoretical performance limit. We encourage the
development of more sophisticated closed-loop control algorithms that come closer to
this limit. Better predictive schemes for future patient geometry should improve the PCA
algorithm greatly. Our use of a weighted quadratic objective function for plan
optimization (specifically the selection of beamlet weights) is probably suboptimal
(Bedford and Webb, 2006; Cao et al., 2006; Choi and Deasy, 2002; Jeraj et al., 2003;
Popple et al., 2005; Thieke et al., 2003; Wu et al., 2002; Yang and Xing, 2004a, ,
2004b). However, all the algorithms discussed in this paper would work with other
objective functions. One could probably construct an optimal algorithm using the theory
of optimal stochastic control. One hurdle is the fact that after delivering the treatment
plan for some fraction we must specify the probability of every possible system state.

We are researching these ideas.

Finally, we emphasize that the proposed ART is purely dose based and doesn't consider
any radiobiological effects. In principle treatment plan optimization should be based on
biological models as they are clinically the most relevant. In practice however, there is

much controversy to this approach: the dose-response function linking the biological
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effect to the radiation dose is not sufficiently understood for various structures. Yang
and Xing(Yang and Xing, 2005) have recently proposed a general time-dose-
fractionation optimization strategy. This idea combined with our ART framework could
potentially handle biologically adaptive radiation therapy. This is clearly a subject of

future research.

5. Conclusion

We have proposed a novel ART treatment planning framework to better exploit the
information from on-board imaging devices. This dynamic closed-loop control
framework is a natural fit for ART and optimizes the dose delivery over the entire course
of treatment. We presented three ART algorithms that fit in the closed-loop control
framework: one Adapting to Changing Geometry and two Adapting to Geometry and
Delivered Dose (ICA and PCA). All three algorithms incorporate volumetric imaging
information just before treatment and the latter two also incorporate information on the
accumulated dose. Application of the proposed algorithms to the phantom and clinical
cases indicates that the algorithms using information about the accumulated dose (ICA
and PCA) allow an escalation of the dose to the tumor. Overall, PCA performed best.
Clinical implementation of closed-loop control algorithms should lead to a positive impact
in cancer radiotherapy. Given the strong correlation between the doses delivered to the
patient and clinical outcome, this new paradigm of ART holds significant promise for us

to improve upon the current practice.
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